Common Vulnerabilities and Exposures (CVE) is a critical tool for maintaining software security, providing a standardized way to track and manage vulnerabilities across systems. Organizations should regularly monitor CVE databases, assess the impact of vulnerabilities, and apply patches promptly to reduce the risk of exploitation.
CVE (Common Vulnerabilities and Exposures) is a public database that provides a standardized method for identifying, tracking, and referencing publicly disclosed security vulnerabilities in software and hardware.
Each vulnerability receives a unique identifier called a CVE ID (e.g., CVE-2023-12345), making it easier to reference specific vulnerabilities across different tools and databases.
Total Search Results: 158437
CVE ID | Description | Severity | Published Date | Affected Vendor | Action |
---|---|---|---|---|---|
CVE-2022-48520 | Unauthorized access vulnerability in the SystemUI module. Successful exploitation of this vulnerability may affect confidentiality. | Unknown | N/A | Huawei | |
CVE-2022-48521 | An issue was discovered in OpenDKIM through 2.10.3, and 2.11.x through 2.11.0-Beta2. It fails to keep track of ordinal numbers when removing fake Authentication-Results header fields, which allows a remote attacker to craft an e-mail message with a fake sender address such that programs that rely on Authentication-Results from OpenDKIM will treat the message as having a valid DKIM signature when in fact it has none. | Unknown | N/A | n/a | |
CVE-2022-48522 | In Perl 5.34.0, function S_find_uninit_var in sv.c has a stack-based crash that can lead to remote code execution or local privilege escalation. | Unknown | N/A | n/a | |
CVE-2022-48538 | In Cacti 1.2.19, there is an authentication bypass in the web login functionality because of improper validation in the PHP code: cacti_ldap_auth() allows a zero as the password. | Unknown | N/A | n/a | |
CVE-2022-48541 | A memory leak in ImageMagick 7.0.10-45 and 6.9.11-22 allows remote attackers to perform a denial of service via the "identify -help" command. | Unknown | N/A | n/a | |
CVE-2022-48545 | An infinite recursion in Catalog::findDestInTree can cause denial of service for xpdf 4.02. | Unknown | N/A | n/a | |
CVE-2022-48547 | A reflected cross-site scripting (XSS) vulnerability in Cacti 0.8.7g and earlier allows unauthenticated remote attackers to inject arbitrary web script or HTML in the "ref" parameter at auth_changepassword.php. | Unknown | N/A | n/a | |
CVE-2022-4855 | A vulnerability, which was classified as critical, was found in SourceCodester Lead Management System 1.0. Affected is an unknown function of the file login.php. The manipulation of the argument username leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-217020. | Unknown | N/A | SourceCodester | |
CVE-2022-48554 | File before 5.43 has an stack-based buffer over-read in file_copystr in funcs.c. NOTE: "File" is the name of an Open Source project. | Unknown | N/A | n/a | |
CVE-2022-4856 | A vulnerability has been found in Modbus Tools Modbus Slave up to 7.5.1 and classified as critical. Affected by this vulnerability is an unknown functionality of the file mbslave.exe of the component mbs File Handler. The manipulation leads to buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-217021 was assigned to this vulnerability. | Unknown | N/A | Modbus Tools | |
CVE-2022-48560 | A use-after-free exists in Python through 3.9 via heappushpop in heapq. | Unknown | N/A | n/a | |
CVE-2022-48564 | read_ints in plistlib.py in Python through 3.9.1 is vulnerable to a potential DoS attack via CPU and RAM exhaustion when processing malformed Apple Property List files in binary format. | Unknown | N/A | n/a | |
CVE-2022-48565 | An XML External Entity (XXE) issue was discovered in Python through 3.9.1. The plistlib module no longer accepts entity declarations in XML plist files to avoid XML vulnerabilities. | Unknown | N/A | n/a | |
CVE-2022-48566 | An issue was discovered in compare_digest in Lib/hmac.py in Python through 3.9.1. Constant-time-defeating optimisations were possible in the accumulator variable in hmac.compare_digest. | Unknown | N/A | n/a | |
CVE-2022-4857 | A vulnerability was found in Modbus Tools Modbus Poll up to 9.10.0 and classified as critical. Affected by this issue is some unknown functionality of the file mbpoll.exe of the component mbp File Handler. The manipulation leads to buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. VDB-217022 is the identifier assigned to this vulnerability. | Unknown | N/A | Modbus Tools | |
CVE-2022-48570 | Crypto++ through 8.4 contains a timing side channel in ECDSA signature generation. Function FixedSizeAllocatorWithCleanup could write to memory outside of the allocation if the allocated memory was not 16-byte aligned. NOTE: this issue exists because the CVE-2019-14318 fix was intentionally removed for functionality reasons. | Unknown | N/A | n/a | |
CVE-2022-48571 | memcached 1.6.7 allows a Denial of Service via multi-packet uploads in UDP. | Unknown | N/A | n/a | |
CVE-2022-48577 | An access issue was addressed with improved access restrictions. This issue is fixed in macOS Ventura 13. An app may be able to access user-sensitive data. | Unknown | N/A | Apple | |
CVE-2022-48578 | An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in macOS Monterey 12.5. Processing an AppleScript may result in unexpected termination or disclosure of process memory. | Unknown | N/A | Apple | |
CVE-2022-48579 | UnRAR before 6.2.3 allows extraction of files outside of the destination folder via symlink chains. | Unknown | N/A | n/a | |
CVE-2022-4858 | Insertion of Sensitive Information into Log Files in M-Files Server before 22.10.11846.0 could allow to obtain sensitive tokens from logs, if specific configurations were set. | Unknown | N/A | M-Files | |
CVE-2022-48580 | A command injection vulnerability exists in the ARP ping device tool feature of the ScienceLogic SL1 that takes unsanitized user controlled input and passes it directly to a shell command. This allows for the injection of arbitrary commands to the underlying operating system. | Unknown | N/A | ScienceLogic | |
CVE-2022-48581 | A command injection vulnerability exists in the “dash export” feature of the ScienceLogic SL1 that takes unsanitized user controlled input and passes it directly to a shell command. This allows for the injection of arbitrary commands to the underlying operating system. | Unknown | N/A | ScienceLogic | |
CVE-2022-48582 | A command injection vulnerability exists in the ticket report generate feature of the ScienceLogic SL1 that takes unsanitized user controlled input and passes it directly to a shell command. This allows for the injection of arbitrary commands to the underlying operating system. | Unknown | N/A | ScienceLogic | |
CVE-2022-48583 | A command injection vulnerability exists in the dashboard scheduler feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a shell command. This allows for the injection of arbitrary commands to the underlying operating system. | Unknown | N/A | ScienceLogic | |
CVE-2022-48584 | A command injection vulnerability exists in the download and convert report feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a shell command. This allows for the injection of arbitrary commands to the underlying operating system. | Unknown | N/A | ScienceLogic | |
CVE-2022-48585 | A SQL injection vulnerability exists in the “admin brand portal” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48586 | A SQL injection vulnerability exists in the “json walker” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48587 | A SQL injection vulnerability exists in the “schedule editor” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48588 | A SQL injection vulnerability exists in the “schedule editor decoupled” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48589 | A SQL injection vulnerability exists in the “reporting job editor” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-4859 | A vulnerability, which was classified as problematic, has been found in Joget up to 7.0.33. This issue affects the function submitForm of the file wflow-core/src/main/java/org/joget/plugin/enterprise/UserProfileMenu.java of the component User Profile Menu. The manipulation of the argument firstName/lastName leads to cross site scripting. The attack may be initiated remotely. Upgrading to version 7.0.34 is able to address this issue. The patch is named 9a77f508a2bf8cf661d588f37a4cc29ecaea4fc8. It is recommended to upgrade the affected component. The associated identifier of this vulnerability is VDB-217055. | Unknown | N/A | n/a | |
CVE-2022-48590 | A SQL injection vulnerability exists in the “admin dynamic app mib errors” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48591 | A SQL injection vulnerability exists in the vendor_state parameter of the “vendor print report” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48592 | A SQL injection vulnerability exists in the vendor_country parameter of the “vendor print report” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48593 | A SQL injection vulnerability exists in the “topology data service” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48594 | A SQL injection vulnerability exists in the “ticket watchers email” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48595 | A SQL injection vulnerability exists in the “ticket template watchers” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48596 | A SQL injection vulnerability exists in the “ticket queue watchers” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48597 | A SQL injection vulnerability exists in the “ticket event report” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48598 | A SQL injection vulnerability exists in the “reporter events type date” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48599 | A SQL injection vulnerability exists in the “reporter events type” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-4860 | A vulnerability was found in KBase Metrics. It has been classified as critical. This affects the function upload_user_data of the file source/daily_cron_jobs/methods_upload_user_stats.py. The manipulation leads to sql injection. The patch is named 959dfb6b05991e30b0fa972a1ecdcaae8e1dae6d. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-217059. | Unknown | N/A | KBase | |
CVE-2022-48600 | A SQL injection vulnerability exists in the “notes view” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48601 | A SQL injection vulnerability exists in the “network print report” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48602 | A SQL injection vulnerability exists in the “message viewer print” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48603 | A SQL injection vulnerability exists in the “message viewer iframe” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48604 | A SQL injection vulnerability exists in the “logging export” feature of the ScienceLogic SL1 that takes unsanitized user‐controlled input and passes it directly to a SQL query. This allows for the injection of arbitrary SQL before being executed against the database. | Unknown | N/A | ScienceLogic | |
CVE-2022-48605 | Input verification vulnerability in the fingerprint module. Successful exploitation of this vulnerability will affect confidentiality, integrity, and availability. | Unknown | N/A | Huawei | |
CVE-2022-48606 | Stability-related vulnerability in the binder background management and control module. Successful exploitation of this vulnerability may affect availability. | Unknown | N/A | Huawei | |
CVE-2022-4861 | Incorrect implementation in authentication protocol in M-Files Client before 22.5.11356.0 allows high privileged user to get other users tokens to another resource. | Unknown | N/A | M-Files | |
CVE-2022-48611 | A logic issue was addressed with improved checks. This issue is fixed in iTunes 12.12.4 for Windows. A local attacker may be able to elevate their privileges. | Unknown | N/A | Apple | |
CVE-2022-48612 | A Universal Cross Site Scripting (UXSS) vulnerability in ClassLink OneClick Extension through 10.7 allows remote attackers to inject JavaScript into any webpage, because a regular expression (validating whether a URL is controlled by ClassLink) is not present in all applicable places. | Unknown | N/A | n/a | |
CVE-2022-48613 | Race condition vulnerability in the kernel module. Successful exploitation of this vulnerability may cause variable values to be read with the condition evaluation bypassed. | Unknown | N/A | Huawei | |
CVE-2022-48614 | Special:Ask in Semantic MediaWiki before 4.0.2 allows Reflected XSS. | Unknown | N/A | n/a | |
CVE-2022-48615 | An improper access control vulnerability exists in a Huawei datacom product. Attackers can exploit this vulnerability to obtain partial device information. | Unknown | N/A | Huawei | |
CVE-2022-48616 | A Huawei data communication product has a command injection vulnerability. Successful exploitation of this vulnerability may allow attackers to gain higher privileges. | Unknown | N/A | Huawei | |
CVE-2022-48618 | The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.1, watchOS 9.2, iOS 16.2 and iPadOS 16.2, tvOS 16.2. An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication. Apple is aware of a report that this issue may have been exploited against versions of iOS released before iOS 15.7.1. | Unknown | N/A | Apple | |
CVE-2022-48619 | An issue was discovered in drivers/input/input.c in the Linux kernel before 5.17.10. An attacker can cause a denial of service (panic) because input_set_capability mishandles the situation in which an event code falls outside of a bitmap. | Unknown | N/A | n/a | |
CVE-2022-4862 | Rendering of HTML provided by another authenticated user is possible in browser on M-Files Web before 22.12.12140.3. This allows the content to steal user sensitive information. This issue affects M-Files New Web: before 22.12.12140.3. | Unknown | N/A | M-Files | |
CVE-2022-48620 | uev (aka libuev) before 2.4.1 has a buffer overflow in epoll_wait if maxevents is a large number. | Unknown | N/A | n/a | |
CVE-2022-48621 | Vulnerability of missing authentication for critical functions in the Wi-Fi module.Successful exploitation of this vulnerability may affect service confidentiality. | Unknown | N/A | Huawei | |
CVE-2022-48622 | In GNOME GdkPixbuf (aka gdk-pixbuf) through 2.42.10, the ANI (Windows animated cursor) decoder encounters heap memory corruption (in ani_load_chunk in io-ani.c) when parsing chunks in a crafted .ani file. A crafted file could allow an attacker to overwrite heap metadata, leading to a denial of service or code execution attack. This occurs in gdk_pixbuf_set_option() in gdk-pixbuf.c. | Unknown | N/A | n/a | |
CVE-2022-48623 | The Cpanel::JSON::XS package before 4.33 for Perl performs out-of-bounds accesses in a way that allows attackers to obtain sensitive information or cause a denial of service. | Unknown | N/A | n/a | |
CVE-2022-48624 | close_altfile in filename.c in less before 606 omits shell_quote calls for LESSCLOSE. | Unknown | N/A | n/a | |
CVE-2022-48625 | Yealink Config Encrypt Tool add RSA before 1.2 has a built-in RSA key pair, and thus there is a risk of decryption by an adversary. | Unknown | N/A | n/a | |
CVE-2022-48626 | In the Linux kernel, the following vulnerability has been resolved: moxart: fix potential use-after-free on remove path It was reported that the mmc host structure could be accessed after it was freed in moxart_remove(), so fix this by saving the base register of the device and using it instead of the pointer dereference. | Unknown | N/A | Linux | |
CVE-2022-48627 | In the Linux kernel, the following vulnerability has been resolved: vt: fix memory overlapping when deleting chars in the buffer A memory overlapping copy occurs when deleting a long line. This memory overlapping copy can cause data corruption when scr_memcpyw is optimized to memcpy because memcpy does not ensure its behavior if the destination buffer overlaps with the source buffer. The line buffer is not always broken, because the memcpy utilizes the hardware acceleration, whose result is not deterministic. Fix this problem by using replacing the scr_memcpyw with scr_memmovew. | Unknown | N/A | Linux | |
CVE-2022-48628 | In the Linux kernel, the following vulnerability has been resolved:
ceph: drop messages from MDS when unmounting
When unmounting all the dirty buffers will be flushed and after
the last osd request is finished the last reference of the i_count
will be released. Then it will flush the dirty cap/snap to MDSs,
and the unmounting won't wait the possible acks, which will ihold
the inodes when updating the metadata locally but makes no sense
any more, of this. This will make the evict_inodes() to skip these
inodes.
If encrypt is enabled the kernel generate a warning when removing
the encrypt keys when the skipped inodes still hold the keyring:
WARNING: CPU: 4 PID: 168846 at fs/crypto/keyring.c:242 fscrypt_destroy_keyring+0x7e/0xd0
CPU: 4 PID: 168846 Comm: umount Tainted: G S 6.1.0-rc5-ceph-g72ead199864c #1
Hardware name: Supermicro SYS-5018R-WR/X10SRW-F, BIOS 2.0 12/17/2015
RIP: 0010:fscrypt_destroy_keyring+0x7e/0xd0
RSP: 0018:ffffc9000b277e28 EFLAGS: 00010202
RAX: 0000000000000002 RBX: ffff88810d52ac00 RCX: ffff88810b56aa00
RDX: 0000000080000000 RSI: ffffffff822f3a09 RDI: ffff888108f59000
RBP: ffff8881d394fb88 R08: 0000000000000028 R09: 0000000000000000
R10: 0000000000000001 R11: 11ff4fe6834fcd91 R12: ffff8881d394fc40
R13: ffff888108f59000 R14: ffff8881d394f800 R15: 0000000000000000
FS: 00007fd83f6f1080(0000) GS:ffff88885fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f918d417000 CR3: 000000017f89a005 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
|
Unknown | N/A | Linux | |
CVE-2022-48629 | In the Linux kernel, the following vulnerability has been resolved: crypto: qcom-rng - ensure buffer for generate is completely filled The generate function in struct rng_alg expects that the destination buffer is completely filled if the function returns 0. qcom_rng_read() can run into a situation where the buffer is partially filled with randomness and the remaining part of the buffer is zeroed since qcom_rng_generate() doesn't check the return value. This issue can be reproduced by running the following from libkcapi: kcapi-rng -b 9000000 > OUTFILE The generated OUTFILE will have three huge sections that contain all zeros, and this is caused by the code where the test 'val & PRNG_STATUS_DATA_AVAIL' fails. Let's fix this issue by ensuring that qcom_rng_read() always returns with a full buffer if the function returns success. Let's also have qcom_rng_generate() return the correct value. Here's some statistics from the ent project (https://www.fourmilab.ch/random/) that shows information about the quality of the generated numbers: $ ent -c qcom-random-before Value Char Occurrences Fraction 0 606748 0.067416 1 33104 0.003678 2 33001 0.003667 ... 253 � 32883 0.003654 254 � 33035 0.003671 255 � 33239 0.003693 Total: 9000000 1.000000 Entropy = 7.811590 bits per byte. Optimum compression would reduce the size of this 9000000 byte file by 2 percent. Chi square distribution for 9000000 samples is 9329962.81, and randomly would exceed this value less than 0.01 percent of the times. Arithmetic mean value of data bytes is 119.3731 (127.5 = random). Monte Carlo value for Pi is 3.197293333 (error 1.77 percent). Serial correlation coefficient is 0.159130 (totally uncorrelated = 0.0). Without this patch, the results of the chi-square test is 0.01%, and the numbers are certainly not random according to ent's project page. The results improve with this patch: $ ent -c qcom-random-after Value Char Occurrences Fraction 0 35432 0.003937 1 35127 0.003903 2 35424 0.003936 ... 253 � 35201 0.003911 254 � 34835 0.003871 255 � 35368 0.003930 Total: 9000000 1.000000 Entropy = 7.999979 bits per byte. Optimum compression would reduce the size of this 9000000 byte file by 0 percent. Chi square distribution for 9000000 samples is 258.77, and randomly would exceed this value 42.24 percent of the times. Arithmetic mean value of data bytes is 127.5006 (127.5 = random). Monte Carlo value for Pi is 3.141277333 (error 0.01 percent). Serial correlation coefficient is 0.000468 (totally uncorrelated = 0.0). This change was tested on a Nexus 5 phone (msm8974 SoC). | Unknown | N/A | Linux | |
CVE-2022-4863 | Improper Handling of Insufficient Permissions or Privileges in GitHub repository usememos/memos prior to 0.9.1. | Unknown | N/A | usememos | |
CVE-2022-48630 | In the Linux kernel, the following vulnerability has been resolved: crypto: qcom-rng - fix infinite loop on requests not multiple of WORD_SZ The commit referenced in the Fixes tag removed the 'break' from the else branch in qcom_rng_read(), causing an infinite loop whenever 'max' is not a multiple of WORD_SZ. This can be reproduced e.g. by running: kcapi-rng -b 67 >/dev/null There are many ways to fix this without adding back the 'break', but they all seem more awkward than simply adding it back, so do just that. Tested on a machine with Qualcomm Amberwing processor. | Unknown | N/A | Linux | |
CVE-2022-48631 | In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug in extents parsing when eh_entries == 0 and eh_depth > 0
When walking through an inode extents, the ext4_ext_binsearch_idx() function
assumes that the extent header has been previously validated. However, there
are no checks that verify that the number of entries (eh->eh_entries) is
non-zero when depth is > 0. And this will lead to problems because the
EXT_FIRST_INDEX() and EXT_LAST_INDEX() will return garbage and result in this:
[ 135.245946] ------------[ cut here ]------------
[ 135.247579] kernel BUG at fs/ext4/extents.c:2258!
[ 135.249045] invalid opcode: 0000 [#1] PREEMPT SMP
[ 135.250320] CPU: 2 PID: 238 Comm: tmp118 Not tainted 5.19.0-rc8+ #4
[ 135.252067] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b-rebuilt.opensuse.org 04/01/2014
[ 135.255065] RIP: 0010:ext4_ext_map_blocks+0xc20/0xcb0
[ 135.256475] Code:
[ 135.261433] RSP: 0018:ffffc900005939f8 EFLAGS: 00010246
[ 135.262847] RAX: 0000000000000024 RBX: ffffc90000593b70 RCX: 0000000000000023
[ 135.264765] RDX: ffff8880038e5f10 RSI: 0000000000000003 RDI: ffff8880046e922c
[ 135.266670] RBP: ffff8880046e9348 R08: 0000000000000001 R09: ffff888002ca580c
[ 135.268576] R10: 0000000000002602 R11: 0000000000000000 R12: 0000000000000024
[ 135.270477] R13: 0000000000000000 R14: 0000000000000024 R15: 0000000000000000
[ 135.272394] FS: 00007fdabdc56740(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
[ 135.274510] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 135.276075] CR2: 00007ffc26bd4f00 CR3: 0000000006261004 CR4: 0000000000170ea0
[ 135.277952] Call Trace:
[ 135.278635] |
Unknown | N/A | Linux | |
CVE-2022-48632 | In the Linux kernel, the following vulnerability has been resolved: i2c: mlxbf: prevent stack overflow in mlxbf_i2c_smbus_start_transaction() memcpy() is called in a loop while 'operation->length' upper bound is not checked and 'data_idx' also increments. | Unknown | N/A | Linux | |
CVE-2022-48633 | In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: Fix WARN_ON(lock->magic != lock) error
psb_gem_unpin() calls dma_resv_lock() but the underlying ww_mutex
gets destroyed by drm_gem_object_release() move the
drm_gem_object_release() call in psb_gem_free_object() to after
the unpin to fix the below warning:
[ 79.693962] ------------[ cut here ]------------
[ 79.693992] DEBUG_LOCKS_WARN_ON(lock->magic != lock)
[ 79.694015] WARNING: CPU: 0 PID: 240 at kernel/locking/mutex.c:582 __ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694052] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer qrtr bnep ath9k ath9k_common ath9k_hw snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel ath3k snd_intel_dspcfg mac80211 snd_intel_sdw_acpi btusb snd_hda_codec btrtl btbcm btintel btmtk bluetooth at24 snd_hda_core snd_hwdep uvcvideo snd_seq libarc4 videobuf2_vmalloc ath videobuf2_memops videobuf2_v4l2 videobuf2_common snd_seq_device videodev acer_wmi intel_powerclamp coretemp mc snd_pcm joydev sparse_keymap ecdh_generic pcspkr wmi_bmof cfg80211 i2c_i801 i2c_smbus snd_timer snd r8169 rfkill lpc_ich soundcore acpi_cpufreq zram rtsx_pci_sdmmc mmc_core serio_raw rtsx_pci gma500_gfx(E) video wmi ip6_tables ip_tables i2c_dev fuse
[ 79.694436] CPU: 0 PID: 240 Comm: plymouthd Tainted: G W E 6.0.0-rc3+ #490
[ 79.694457] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013
[ 79.694469] RIP: 0010:__ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694496] Code: ff 85 c0 0f 84 15 fb ff ff 8b 05 ca 3c 11 01 85 c0 0f 85 07 fb ff ff 48 c7 c6 30 cb 84 aa 48 c7 c7 a3 e1 82 aa e8 ac 29 f8 ff <0f> 0b e9 ed fa ff ff e8 5b 83 8a ff 85 c0 74 10 44 8b 0d 98 3c 11
[ 79.694513] RSP: 0018:ffffad1dc048bbe0 EFLAGS: 00010282
[ 79.694623] RAX: 0000000000000028 RBX: 0000000000000000 RCX: 0000000000000000
[ 79.694636] RDX: 0000000000000001 RSI: ffffffffaa8b0ffc RDI: 00000000ffffffff
[ 79.694650] RBP: ffffad1dc048bc80 R08: 0000000000000000 R09: ffffad1dc048ba90
[ 79.694662] R10: 0000000000000003 R11: ffffffffaad62fe8 R12: ffff9ff302103138
[ 79.694675] R13: ffff9ff306ec8000 R14: ffff9ff307779078 R15: ffff9ff3014c0270
[ 79.694690] FS: 00007ff1cccf1740(0000) GS:ffff9ff3bc200000(0000) knlGS:0000000000000000
[ 79.694705] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 79.694719] CR2: 0000559ecbcb4420 CR3: 0000000013210000 CR4: 00000000000006f0
[ 79.694734] Call Trace:
[ 79.694749] |
Unknown | N/A | Linux | |
CVE-2022-48634 | In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: Fix BUG: sleeping function called from invalid context errors
gma_crtc_page_flip() was holding the event_lock spinlock while calling
crtc_funcs->mode_set_base() which takes ww_mutex.
The only reason to hold event_lock is to clear gma_crtc->page_flip_event
on mode_set_base() errors.
Instead unlock it after setting gma_crtc->page_flip_event and on
errors re-take the lock and clear gma_crtc->page_flip_event it
it is still set.
This fixes the following WARN/stacktrace:
[ 512.122953] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:870
[ 512.123004] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1253, name: gnome-shell
[ 512.123031] preempt_count: 1, expected: 0
[ 512.123048] RCU nest depth: 0, expected: 0
[ 512.123066] INFO: lockdep is turned off.
[ 512.123080] irq event stamp: 0
[ 512.123094] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[ 512.123134] hardirqs last disabled at (0): [ |
Unknown | N/A | Linux | |
CVE-2022-48635 | In the Linux kernel, the following vulnerability has been resolved:
fsdax: Fix infinite loop in dax_iomap_rw()
I got an infinite loop and a WARNING report when executing a tail command
in virtiofs.
WARNING: CPU: 10 PID: 964 at fs/iomap/iter.c:34 iomap_iter+0x3a2/0x3d0
Modules linked in:
CPU: 10 PID: 964 Comm: tail Not tainted 5.19.0-rc7
Call Trace:
|
Unknown | N/A | Linux | |
CVE-2022-48636 | In the Linux kernel, the following vulnerability has been resolved: s390/dasd: fix Oops in dasd_alias_get_start_dev due to missing pavgroup Fix Oops in dasd_alias_get_start_dev() function caused by the pavgroup pointer being NULL. The pavgroup pointer is checked on the entrance of the function but without the lcu->lock being held. Therefore there is a race window between dasd_alias_get_start_dev() and _lcu_update() which sets pavgroup to NULL with the lcu->lock held. Fix by checking the pavgroup pointer with lcu->lock held. | Unknown | N/A | Linux | |
CVE-2022-48637 | In the Linux kernel, the following vulnerability has been resolved: bnxt: prevent skb UAF after handing over to PTP worker When reading the timestamp is required bnxt_tx_int() hands over the ownership of the completed skb to the PTP worker. The skb should not be used afterwards, as the worker may run before the rest of our code and free the skb, leading to a use-after-free. Since dev_kfree_skb_any() accepts NULL make the loss of ownership more obvious and set skb to NULL. | Unknown | N/A | Linux | |
CVE-2022-48638 | In the Linux kernel, the following vulnerability has been resolved: cgroup: cgroup_get_from_id() must check the looked-up kn is a directory cgroup has to be one kernfs dir, otherwise kernel panic is caused, especially cgroup id is provide from userspace. | Unknown | N/A | Linux | |
CVE-2022-48639 | In the Linux kernel, the following vulnerability has been resolved: net: sched: fix possible refcount leak in tc_new_tfilter() tfilter_put need to be called to put the refount got by tp->ops->get to avoid possible refcount leak when chain->tmplt_ops != NULL and chain->tmplt_ops != tp->ops. | Unknown | N/A | Linux | |
CVE-2022-4864 | Argument Injection in GitHub repository froxlor/froxlor prior to 2.0.0-beta1. | Unknown | N/A | froxlor | |
CVE-2022-48640 | In the Linux kernel, the following vulnerability has been resolved: bonding: fix NULL deref in bond_rr_gen_slave_id Fix a NULL dereference of the struct bonding.rr_tx_counter member because if a bond is initially created with an initial mode != zero (Round Robin) the memory required for the counter is never created and when the mode is changed there is never any attempt to verify the memory is allocated upon switching modes. This causes the following Oops on an aarch64 machine: [ 334.686773] Unable to handle kernel paging request at virtual address ffff2c91ac905000 [ 334.694703] Mem abort info: [ 334.697486] ESR = 0x0000000096000004 [ 334.701234] EC = 0x25: DABT (current EL), IL = 32 bits [ 334.706536] SET = 0, FnV = 0 [ 334.709579] EA = 0, S1PTW = 0 [ 334.712719] FSC = 0x04: level 0 translation fault [ 334.717586] Data abort info: [ 334.720454] ISV = 0, ISS = 0x00000004 [ 334.724288] CM = 0, WnR = 0 [ 334.727244] swapper pgtable: 4k pages, 48-bit VAs, pgdp=000008044d662000 [ 334.733944] [ffff2c91ac905000] pgd=0000000000000000, p4d=0000000000000000 [ 334.740734] Internal error: Oops: 96000004 [#1] SMP [ 334.745602] Modules linked in: bonding tls veth rfkill sunrpc arm_spe_pmu vfat fat acpi_ipmi ipmi_ssif ixgbe igb i40e mdio ipmi_devintf ipmi_msghandler arm_cmn arm_dsu_pmu cppc_cpufreq acpi_tad fuse zram crct10dif_ce ast ghash_ce sbsa_gwdt nvme drm_vram_helper drm_ttm_helper nvme_core ttm xgene_hwmon [ 334.772217] CPU: 7 PID: 2214 Comm: ping Not tainted 6.0.0-rc4-00133-g64ae13ed4784 #4 [ 334.779950] Hardware name: GIGABYTE R272-P31-00/MP32-AR1-00, BIOS F18v (SCP: 1.08.20211002) 12/01/2021 [ 334.789244] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 334.796196] pc : bond_rr_gen_slave_id+0x40/0x124 [bonding] [ 334.801691] lr : bond_xmit_roundrobin_slave_get+0x38/0xdc [bonding] [ 334.807962] sp : ffff8000221733e0 [ 334.811265] x29: ffff8000221733e0 x28: ffffdbac8572d198 x27: ffff80002217357c [ 334.818392] x26: 000000000000002a x25: ffffdbacb33ee000 x24: ffff07ff980fa000 [ 334.825519] x23: ffffdbacb2e398ba x22: ffff07ff98102000 x21: ffff07ff981029c0 [ 334.832646] x20: 0000000000000001 x19: ffff07ff981029c0 x18: 0000000000000014 [ 334.839773] x17: 0000000000000000 x16: ffffdbacb1004364 x15: 0000aaaabe2f5a62 [ 334.846899] x14: ffff07ff8e55d968 x13: ffff07ff8e55db30 x12: 0000000000000000 [ 334.854026] x11: ffffdbacb21532e8 x10: 0000000000000001 x9 : ffffdbac857178ec [ 334.861153] x8 : ffff07ff9f6e5a28 x7 : 0000000000000000 x6 : 000000007c2b3742 [ 334.868279] x5 : ffff2c91ac905000 x4 : ffff2c91ac905000 x3 : ffff07ff9f554400 [ 334.875406] x2 : ffff2c91ac905000 x1 : 0000000000000001 x0 : ffff07ff981029c0 [ 334.882532] Call trace: [ 334.884967] bond_rr_gen_slave_id+0x40/0x124 [bonding] [ 334.890109] bond_xmit_roundrobin_slave_get+0x38/0xdc [bonding] [ 334.896033] __bond_start_xmit+0x128/0x3a0 [bonding] [ 334.901001] bond_start_xmit+0x54/0xb0 [bonding] [ 334.905622] dev_hard_start_xmit+0xb4/0x220 [ 334.909798] __dev_queue_xmit+0x1a0/0x720 [ 334.913799] arp_xmit+0x3c/0xbc [ 334.916932] arp_send_dst+0x98/0xd0 [ 334.920410] arp_solicit+0xe8/0x230 [ 334.923888] neigh_probe+0x60/0xb0 [ 334.927279] __neigh_event_send+0x3b0/0x470 [ 334.931453] neigh_resolve_output+0x70/0x90 [ 334.935626] ip_finish_output2+0x158/0x514 [ 334.939714] __ip_finish_output+0xac/0x1a4 [ 334.943800] ip_finish_output+0x40/0xfc [ 334.947626] ip_output+0xf8/0x1a4 [ 334.950931] ip_send_skb+0x5c/0x100 [ 334.954410] ip_push_pending_frames+0x3c/0x60 [ 334.958758] raw_sendmsg+0x458/0x6d0 [ 334.962325] inet_sendmsg+0x50/0x80 [ 334.965805] sock_sendmsg+0x60/0x6c [ 334.969286] __sys_sendto+0xc8/0x134 [ 334.972853] __arm64_sys_sendto+0x34/0x4c ---truncated--- | Unknown | N/A | Linux | |
CVE-2022-48641 | In the Linux kernel, the following vulnerability has been resolved: netfilter: ebtables: fix memory leak when blob is malformed The bug fix was incomplete, it "replaced" crash with a memory leak. The old code had an assignment to "ret" embedded into the conditional, restore this. | Unknown | N/A | Linux | |
CVE-2022-48642 | In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix percpu memory leak at nf_tables_addchain() It seems to me that percpu memory for chain stats started leaking since commit 3bc158f8d0330f0a ("netfilter: nf_tables: map basechain priority to hardware priority") when nft_chain_offload_priority() returned an error. | Unknown | N/A | Linux | |
CVE-2022-48643 | In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix nft_counters_enabled underflow at nf_tables_addchain() syzbot is reporting underflow of nft_counters_enabled counter at nf_tables_addchain() [1], for commit 43eb8949cfdffa76 ("netfilter: nf_tables: do not leave chain stats enabled on error") missed that nf_tables_chain_destroy() after nft_basechain_init() in the error path of nf_tables_addchain() decrements the counter because nft_basechain_init() makes nft_is_base_chain() return true by setting NFT_CHAIN_BASE flag. Increment the counter immediately after returning from nft_basechain_init(). | Unknown | N/A | Linux | |
CVE-2022-48644 | In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on an invalid set of flags. As a result, it is possible to crash the kernel if user space forces an error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling of taprio_enable_offload(). This is because drivers do not expect the offload to be disabled when it was never enabled. The error that we force here is to attach taprio as a non-root qdisc, but instead as child of an mqprio root qdisc: $ tc qdisc add dev swp0 root handle 1: \ mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 $ tc qdisc replace dev swp0 parent 1:1 \ taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \ flags 0x0 clockid CLOCK_TAI Unable to handle kernel paging request at virtual address fffffffffffffff8 [fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Call trace: taprio_dump+0x27c/0x310 vsc9959_port_setup_tc+0x1f4/0x460 felix_port_setup_tc+0x24/0x3c dsa_slave_setup_tc+0x54/0x27c taprio_disable_offload.isra.0+0x58/0xe0 taprio_destroy+0x80/0x104 qdisc_create+0x240/0x470 tc_modify_qdisc+0x1fc/0x6b0 rtnetlink_rcv_msg+0x12c/0x390 netlink_rcv_skb+0x5c/0x130 rtnetlink_rcv+0x1c/0x2c Fix this by keeping track of the operations we made, and undo the offload only if we actually did it. I've added "bool offloaded" inside a 4 byte hole between "int clockid" and "atomic64_t picos_per_byte". Now the first cache line looks like below: $ pahole -C taprio_sched net/sched/sch_taprio.o struct taprio_sched { struct Qdisc * * qdiscs; /* 0 8 */ struct Qdisc * root; /* 8 8 */ u32 flags; /* 16 4 */ enum tk_offsets tk_offset; /* 20 4 */ int clockid; /* 24 4 */ bool offloaded; /* 28 1 */ /* XXX 3 bytes hole, try to pack */ atomic64_t picos_per_byte; /* 32 0 */ /* XXX 8 bytes hole, try to pack */ spinlock_t current_entry_lock; /* 40 0 */ /* XXX 8 bytes hole, try to pack */ struct sched_entry * current_entry; /* 48 8 */ struct sched_gate_list * oper_sched; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */ | Unknown | N/A | Linux | |
CVE-2022-48645 | In the Linux kernel, the following vulnerability has been resolved: net: enetc: deny offload of tc-based TSN features on VF interfaces TSN features on the ENETC (taprio, cbs, gate, police) are configured through a mix of command BD ring messages and port registers: enetc_port_rd(), enetc_port_wr(). Port registers are a region of the ENETC memory map which are only accessible from the PCIe Physical Function. They are not accessible from the Virtual Functions. Moreover, attempting to access these registers crashes the kernel: $ echo 1 > /sys/bus/pci/devices/0000\:00\:00.0/sriov_numvfs pci 0000:00:01.0: [1957:ef00] type 00 class 0x020001 fsl_enetc_vf 0000:00:01.0: Adding to iommu group 15 fsl_enetc_vf 0000:00:01.0: enabling device (0000 -> 0002) fsl_enetc_vf 0000:00:01.0 eno0vf0: renamed from eth0 $ tc qdisc replace dev eno0vf0 root taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 900000 sched-entry S 0x80 100000 flags 0x2 Unable to handle kernel paging request at virtual address ffff800009551a08 Internal error: Oops: 96000007 [#1] PREEMPT SMP pc : enetc_setup_tc_taprio+0x170/0x47c lr : enetc_setup_tc_taprio+0x16c/0x47c Call trace: enetc_setup_tc_taprio+0x170/0x47c enetc_setup_tc+0x38/0x2dc taprio_change+0x43c/0x970 taprio_init+0x188/0x1e0 qdisc_create+0x114/0x470 tc_modify_qdisc+0x1fc/0x6c0 rtnetlink_rcv_msg+0x12c/0x390 Split enetc_setup_tc() into separate functions for the PF and for the VF drivers. Also remove enetc_qos.o from being included into enetc-vf.ko, since it serves absolutely no purpose there. | Unknown | N/A | Linux | |
CVE-2022-48646 | In the Linux kernel, the following vulnerability has been resolved: sfc/siena: fix null pointer dereference in efx_hard_start_xmit Like in previous patch for sfc, prevent potential (but unlikely) NULL pointer dereference. | Unknown | N/A | Linux | |
CVE-2022-48647 | In the Linux kernel, the following vulnerability has been resolved:
sfc: fix TX channel offset when using legacy interrupts
In legacy interrupt mode the tx_channel_offset was hardcoded to 1, but
that's not correct if efx_sepparate_tx_channels is false. In that case,
the offset is 0 because the tx queues are in the single existing channel
at index 0, together with the rx queue.
Without this fix, as soon as you try to send any traffic, it tries to
get the tx queues from an uninitialized channel getting these errors:
WARNING: CPU: 1 PID: 0 at drivers/net/ethernet/sfc/tx.c:540 efx_hard_start_xmit+0x12e/0x170 [sfc]
[...]
RIP: 0010:efx_hard_start_xmit+0x12e/0x170 [sfc]
[...]
Call Trace:
|
Unknown | N/A | Linux | |
CVE-2022-48648 | In the Linux kernel, the following vulnerability has been resolved: sfc: fix null pointer dereference in efx_hard_start_xmit Trying to get the channel from the tx_queue variable here is wrong because we can only be here if tx_queue is NULL, so we shouldn't dereference it. As the above comment in the code says, this is very unlikely to happen, but it's wrong anyway so let's fix it. I hit this issue because of a different bug that caused tx_queue to be NULL. If that happens, this is the error message that we get here: BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 [...] RIP: 0010:efx_hard_start_xmit+0x153/0x170 [sfc] | Unknown | N/A | Linux | |
CVE-2022-48649 | In the Linux kernel, the following vulnerability has been resolved:
mm/slab_common: fix possible double free of kmem_cache
When doing slub_debug test, kfence's 'test_memcache_typesafe_by_rcu'
kunit test case cause a use-after-free error:
BUG: KASAN: use-after-free in kobject_del+0x14/0x30
Read of size 8 at addr ffff888007679090 by task kunit_try_catch/261
CPU: 1 PID: 261 Comm: kunit_try_catch Tainted: G B N 6.0.0-rc5-next-20220916 #17
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
|
Unknown | N/A | Linux | |
CVE-2022-4865 | Cross-site Scripting (XSS) - Stored in GitHub repository usememos/memos prior to 0.9.1. | Unknown | N/A | usememos | |
CVE-2022-48650 | In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix memory leak in __qlt_24xx_handle_abts() Commit 8f394da36a36 ("scsi: qla2xxx: Drop TARGET_SCF_LOOKUP_LUN_FROM_TAG") made the __qlt_24xx_handle_abts() function return early if tcm_qla2xxx_find_cmd_by_tag() didn't find a command, but it missed to clean up the allocated memory for the management command. | Unknown | N/A | Linux | |
CVE-2022-48651 | In the Linux kernel, the following vulnerability has been resolved: ipvlan: Fix out-of-bound bugs caused by unset skb->mac_header If an AF_PACKET socket is used to send packets through ipvlan and the default xmit function of the AF_PACKET socket is changed from dev_queue_xmit() to packet_direct_xmit() via setsockopt() with the option name of PACKET_QDISC_BYPASS, the skb->mac_header may not be reset and remains as the initial value of 65535, this may trigger slab-out-of-bounds bugs as following: ================================================================= UG: KASAN: slab-out-of-bounds in ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan] PU: 2 PID: 1768 Comm: raw_send Kdump: loaded Not tainted 6.0.0-rc4+ #6 ardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 all Trace: print_address_description.constprop.0+0x1d/0x160 print_report.cold+0x4f/0x112 kasan_report+0xa3/0x130 ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan] ipvlan_start_xmit+0x29/0xa0 [ipvlan] __dev_direct_xmit+0x2e2/0x380 packet_direct_xmit+0x22/0x60 packet_snd+0x7c9/0xc40 sock_sendmsg+0x9a/0xa0 __sys_sendto+0x18a/0x230 __x64_sys_sendto+0x74/0x90 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The root cause is: 1. packet_snd() only reset skb->mac_header when sock->type is SOCK_RAW and skb->protocol is not specified as in packet_parse_headers() 2. packet_direct_xmit() doesn't reset skb->mac_header as dev_queue_xmit() In this case, skb->mac_header is 65535 when ipvlan_xmit_mode_l2() is called. So when ipvlan_xmit_mode_l2() gets mac header with eth_hdr() which use "skb->head + skb->mac_header", out-of-bound access occurs. This patch replaces eth_hdr() with skb_eth_hdr() in ipvlan_xmit_mode_l2() and reset mac header in multicast to solve this out-of-bound bug. | Unknown | N/A | Linux | |
CVE-2022-48652 | In the Linux kernel, the following vulnerability has been resolved: ice: Fix crash by keep old cfg when update TCs more than queues There are problems if allocated queues less than Traffic Classes. Commit a632b2a4c920 ("ice: ethtool: Prohibit improper channel config for DCB") already disallow setting less queues than TCs. Another case is if we first set less queues, and later update more TCs config due to LLDP, ice_vsi_cfg_tc() will failed but left dirty num_txq/rxq and tc_cfg in vsi, that will cause invalid pointer access. [ 95.968089] ice 0000:3b:00.1: More TCs defined than queues/rings allocated. [ 95.968092] ice 0000:3b:00.1: Trying to use more Rx queues (8), than were allocated (1)! [ 95.968093] ice 0000:3b:00.1: Failed to config TC for VSI index: 0 [ 95.969621] general protection fault: 0000 [#1] SMP NOPTI [ 95.969705] CPU: 1 PID: 58405 Comm: lldpad Kdump: loaded Tainted: G U W O --------- -t - 4.18.0 #1 [ 95.969867] Hardware name: O.E.M/BC11SPSCB10, BIOS 8.23 12/30/2021 [ 95.969992] RIP: 0010:devm_kmalloc+0xa/0x60 [ 95.970052] Code: 5c ff ff ff 31 c0 5b 5d 41 5c c3 b8 f4 ff ff ff eb f4 0f 1f 40 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 89 d1 <8b> 97 60 02 00 00 48 8d 7e 18 48 39 f7 72 3f 55 89 ce 53 48 8b 4c [ 95.970344] RSP: 0018:ffffc9003f553888 EFLAGS: 00010206 [ 95.970425] RAX: dead000000000200 RBX: ffffea003c425b00 RCX: 00000000006080c0 [ 95.970536] RDX: 00000000006080c0 RSI: 0000000000000200 RDI: dead000000000200 [ 95.970648] RBP: dead000000000200 R08: 00000000000463c0 R09: ffff888ffa900000 [ 95.970760] R10: 0000000000000000 R11: 0000000000000002 R12: ffff888ff6b40100 [ 95.970870] R13: ffff888ff6a55018 R14: 0000000000000000 R15: ffff888ff6a55460 [ 95.970981] FS: 00007f51b7d24700(0000) GS:ffff88903ee80000(0000) knlGS:0000000000000000 [ 95.971108] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 95.971197] CR2: 00007fac5410d710 CR3: 0000000f2c1de002 CR4: 00000000007606e0 [ 95.971309] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 95.971419] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 95.971530] PKRU: 55555554 [ 95.971573] Call Trace: [ 95.971622] ice_setup_rx_ring+0x39/0x110 [ice] [ 95.971695] ice_vsi_setup_rx_rings+0x54/0x90 [ice] [ 95.971774] ice_vsi_open+0x25/0x120 [ice] [ 95.971843] ice_open_internal+0xb8/0x1f0 [ice] [ 95.971919] ice_ena_vsi+0x4f/0xd0 [ice] [ 95.971987] ice_dcb_ena_dis_vsi.constprop.5+0x29/0x90 [ice] [ 95.972082] ice_pf_dcb_cfg+0x29a/0x380 [ice] [ 95.972154] ice_dcbnl_setets+0x174/0x1b0 [ice] [ 95.972220] dcbnl_ieee_set+0x89/0x230 [ 95.972279] ? dcbnl_ieee_del+0x150/0x150 [ 95.972341] dcb_doit+0x124/0x1b0 [ 95.972392] rtnetlink_rcv_msg+0x243/0x2f0 [ 95.972457] ? dcb_doit+0x14d/0x1b0 [ 95.972510] ? __kmalloc_node_track_caller+0x1d3/0x280 [ 95.972591] ? rtnl_calcit.isra.31+0x100/0x100 [ 95.972661] netlink_rcv_skb+0xcf/0xf0 [ 95.972720] netlink_unicast+0x16d/0x220 [ 95.972781] netlink_sendmsg+0x2ba/0x3a0 [ 95.975891] sock_sendmsg+0x4c/0x50 [ 95.979032] ___sys_sendmsg+0x2e4/0x300 [ 95.982147] ? kmem_cache_alloc+0x13e/0x190 [ 95.985242] ? __wake_up_common_lock+0x79/0x90 [ 95.988338] ? __check_object_size+0xac/0x1b0 [ 95.991440] ? _copy_to_user+0x22/0x30 [ 95.994539] ? move_addr_to_user+0xbb/0xd0 [ 95.997619] ? __sys_sendmsg+0x53/0x80 [ 96.000664] __sys_sendmsg+0x53/0x80 [ 96.003747] do_syscall_64+0x5b/0x1d0 [ 96.006862] entry_SYSCALL_64_after_hwframe+0x65/0xca Only update num_txq/rxq when passed check, and restore tc_cfg if setup queue map failed. | Unknown | N/A | Linux | |
CVE-2022-48653 | In the Linux kernel, the following vulnerability has been resolved:
ice: Don't double unplug aux on peer initiated reset
In the IDC callback that is accessed when the aux drivers request a reset,
the function to unplug the aux devices is called. This function is also
called in the ice_prepare_for_reset function. This double call is causing
a "scheduling while atomic" BUG.
[ 662.676430] ice 0000:4c:00.0 rocep76s0: cqp opcode = 0x1 maj_err_code = 0xffff min_err_code = 0x8003
[ 662.676609] ice 0000:4c:00.0 rocep76s0: [Modify QP Cmd Error][op_code=8] status=-29 waiting=1 completion_err=1 maj=0xffff min=0x8003
[ 662.815006] ice 0000:4c:00.0 rocep76s0: ICE OICR event notification: oicr = 0x10000003
[ 662.815014] ice 0000:4c:00.0 rocep76s0: critical PE Error, GLPE_CRITERR=0x00011424
[ 662.815017] ice 0000:4c:00.0 rocep76s0: Requesting a reset
[ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002
[ 662.815475] BUG: scheduling while atomic: swapper/37/0/0x00010002
[ 662.815477] Modules linked in: rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs rfkill 8021q garp mrp stp llc vfat fat rpcrdma intel_rapl_msr intel_rapl_common sunrpc i10nm_edac rdma_ucm nfit ib_srpt libnvdimm ib_isert iscsi_target_mod x86_pkg_temp_thermal intel_powerclamp coretemp target_core_mod snd_hda_intel ib_iser snd_intel_dspcfg libiscsi snd_intel_sdw_acpi scsi_transport_iscsi kvm_intel iTCO_wdt rdma_cm snd_hda_codec kvm iw_cm ipmi_ssif iTCO_vendor_support snd_hda_core irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel snd_hwdep snd_seq snd_seq_device rapl snd_pcm snd_timer isst_if_mbox_pci pcspkr isst_if_mmio irdma intel_uncore idxd acpi_ipmi joydev isst_if_common snd mei_me idxd_bus ipmi_si soundcore i2c_i801 mei ipmi_devintf i2c_smbus i2c_ismt ipmi_msghandler acpi_power_meter acpi_pad rv(OE) ib_uverbs ib_cm ib_core xfs libcrc32c ast i2c_algo_bit drm_vram_helper drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops drm_ttm_helpe
r ttm
[ 662.815546] nvme nvme_core ice drm crc32c_intel i40e t10_pi wmi pinctrl_emmitsburg dm_mirror dm_region_hash dm_log dm_mod fuse
[ 662.815557] Preemption disabled at:
[ 662.815558] [<0000000000000000>] 0x0
[ 662.815563] CPU: 37 PID: 0 Comm: swapper/37 Kdump: loaded Tainted: G S OE 5.17.1 #2
[ 662.815566] Hardware name: Intel Corporation D50DNP/D50DNP, BIOS SE5C6301.86B.6624.D18.2111021741 11/02/2021
[ 662.815568] Call Trace:
[ 662.815572] |
Unknown | N/A | Linux | |
CVE-2022-48654 | In the Linux kernel, the following vulnerability has been resolved: netfilter: nfnetlink_osf: fix possible bogus match in nf_osf_find() nf_osf_find() incorrectly returns true on mismatch, this leads to copying uninitialized memory area in nft_osf which can be used to leak stale kernel stack data to userspace. | Unknown | N/A | Linux | |
CVE-2022-48655 | In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Harden accesses to the reset domains Accessing reset domains descriptors by the index upon the SCMI drivers requests through the SCMI reset operations interface can potentially lead to out-of-bound violations if the SCMI driver misbehave. Add an internal consistency check before any such domains descriptors accesses. | Unknown | N/A | Linux | |
CVE-2022-48656 | In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: k3-udma-private: Fix refcount leak bug in of_xudma_dev_get() We should call of_node_put() for the reference returned by of_parse_phandle() in fail path or when it is not used anymore. Here we only need to move the of_node_put() before the check. | Unknown | N/A | Linux |
vunerability-insight.com © 2023 - 2025. All Rights Reserved.
Vulnerability Data Repositories v